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Abstract

In this paper, the study of a plate under impulse loads and the correlated Shock Response Spectrum (SRS) has been

carried out. The Reissner–Mindlin plate have been considered and the modal analysis technique used to develop the

solution. The influence of the impulse (rise function, rise time) and geometric parameters (thickness of the plate, distance of

the measure point from the point load) has been evaluated.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A response of an elastic plate to impulse loads is of paramount interest in wide ranges of structural analysis
concerning mechanical, aerospace, military and civil engineering, particularly for applications. For example,
in aerospace applications, impulses initiated by pyrotechnic devices appear in different places during and after
the launch of a satellite (due to launch vehicle, separation, deployment of appendages such as solar arrays and
antennas). The firings of these pyrotechnical charges generate severe impulse loads (so-called pyroshock),
which may cause failures, especially in electronic and electromechanical equipments [1]. Because of the
complexity of structures it is difficult to describe the shock transmission and to predict the shock level as well
as structural failure. To overcome this difficulty, engineers have found most useful the Shock Response
Spectrum concept (SRS)1 (see Appendix). Studies in this field are of two types: some analyze the possibility of
reproducing the real SRS in laboratory [3–6], others, instead, analyze the behavior of structures under impulse
loads [7,8]. In the first case aerospace industries, for example, replicate the real shock loads in a laboratory,
where the test item is attached on an aluminum plate [3]. The plate is struck with an impactor, and the SRS is
evaluated by the accelerations measured near the test item. The optimal configuration of the system is
obtained by trial and error method, varying the plate parameters (width, thickness, etc.) or the impulse
parameters (intensity, point load, material of the impactor, etc.) until the obtained SRS is ‘‘near’’ the real SRS.
In the second case, the analysis can be carried out by using the exact three-dimensional (3D) theory or one of
the approximate models for plates, that is derived from that theory introducing some limitations on the
kinematics (Kirchhoff–Love, Reissner–Mindlin, etc.). In this paper a link between these two fields is
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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presented. In particular, a relationship between the SRS and the impulse (rise function, rise time) and
geometric parameters (thickness of the plate, distance of the measure point from the point load) has been
evaluated. The plate model considered is the Reissner–Mindlin plate.2 It is well known that this model takes
into account the shear deformability, unlike the Kirchhoff–Love model. This effect is important as the
thickness span or the wavenumber increases, so that to compute the acceleration of a propagation wave, where
the eigenmodes at high frequencies must be considered, it cannot be omitted. The aim of this work is to
propose a method that can help to find the optimal configuration of the system to reproduce the real SRS in
laboratory, reducing the number of trials. Besides, if the loads applied to a plate element of satellite are
known, it is possible to calculate the SRS in every point of the plate and chose the best position for sensible
electronic components.

2. Eigenfrequencies and eigenmodes of Reissner–Mindlin plates

The theory of Reissner–Mindlin plates is well known [9]. Let E be the Euclidian ambient space, the plate
reference configuration in E is a right cylinder CðeÞ of thickness 2e:

CðeÞ:P� ½�e;þe� ) P ¼ ½0;Lx� [ ½0;Ly�. (1)

The displacement vector u can be decomposed in a vector v parallel to the middle plane of the plate and
another we perpendicular to the same plane Fig. 1:

uðp; B; tÞ ¼ wðp; tÞeþ Bvðp; tÞ; v � e ¼ 0. (2)

In order to write these equations in synthetic form it is useful to proceed along the lines of Ref. [10] and use
the same terminology:

the mean stress N and the couple stress M are defined to be

N ¼

Z þe
�e

Sðp; z; tÞdz; M ¼

Z þe
�e

zSðp; z; tÞdz; (3)

the bulk force b and the bulk couple c are:

b ¼

Z þe
�e

fðp; z; tÞdz; c ¼

Z þe
�e

zfðp; z; tÞdz; (4)

and the base boundary-traction n and the boundary couple m are:

n ¼

Z þe
�e

tðp; z; tÞdz; m ¼

Z þe
�e

ztðp; z; tÞdz; (5)

where S is the stress tensor, f are the volume forces, t is the applied traction at boundary qP, tþ and t� are,
respectively, the applied traction at upper and lower surfaces.

In addition, the subsequent symbols are defined3:

P ¼ I� e� e; Q ¼ PðNeÞ; bM ¼ P2P½M�. (6)

With these notations the balance equations can be written in the form [9]

� divðQÞ ¼ bz þ tþz þ t�z ,

� divð bMÞ þQ ¼ Pcþ ePðtþ � t�Þ, ð7Þ

together with the boundary conditions:

Nm ¼ n;

Mm ¼ m;
on qP, (8)

where m is the outward unit normal to qP (Fig. 1).
2A 3D approach furnishes the exact solution but, for some applications, can be very onerous.
3Given A;B;C 2 Lin, the conjugation product of the ordered pair ðA;BÞ is the fourth-order tensor: A2B½C� ¼ ACBT:
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Fig. 1. Plate reference configuration.
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The eigenmodes and eigenvalues are obtained from the solution of the free vibration problems

f ¼ �r€u ¼ �rð €weþ z€vÞ, (9)

where r denotes the mass density and superposed point the derivative with respect to the time t.
Then from Eqs. (4) and (5):

b ¼ �r
Rþe
�e ð €weþ z€vÞ ¼ �2er €we;

c ¼ �r
Rþe
�e ðz €weþ z2€vÞ ¼ � 2

3
e3r€v;

n ¼ 0;

m ¼ 0;

tþ ¼ 0;

t� ¼ 0;

on P (10)

and therefore (7) begins:

divðQÞ ¼ 2er €w,

� divð bMÞ þQ ¼ �2
3
e3r€v. ð11Þ

To write the equilibrium equations in terms of displacements, the constitutive equations for elastic
transversely isotropic material, regarding the direction e, must be introduced [11], and the equation that
governs free vibrations of Reissner–Mindlin plates is obtained:

Dr4wþ o2 D

Z
rþ

2

3
e3r

� �
r2wþ o2 2

3
e3
1

Z
o2r2 � 2er

� �
w ¼ 0 on P, (12)

where D ¼ Eð2eÞ3=ð12ð1� n2ÞÞ is the flexural rigidity (E the Young’s modulus and n the Poisson’s coefficient)
and Z ¼ k2G is the shear coefficient with k2

¼ 5=6 [12].
To study the dispersion relations it is sufficient to let [13]:

wðx; tÞ ¼ cos½xðx� ctÞ�, (13)

and the resulting dispersion curve is shown in Fig. 2. The dimensionless velocity and wavenumber of the figure
are c ¼ c=cs and x ¼ xh=2p with cs ¼ ðG=rÞ

1=2;G ¼ ½E=2ð1þ nÞ� and h ¼ 2e. It must be observed that for low
wavenumbers the three theories: exact 3D, Kirchhoff–Love (classical plate theory) and Reissner–Mindlin
(classical plate theory þ shear correction), with or without rotary inertia correction, are in good agreement; by
increasing x the differences between the 3D and Kirchhoff–Love solution are relevant, while it is impossible to
detect differences between 3D and the Reissner–Mindlin solution.



ARTICLE IN PRESS

Fig. 2. Dispersion curve: � ¼ Kirchhoff–Love theory; ’ ¼ Kirchhoff–Love theoryþ rotary inertia correction; m ¼ Reissner–Mindlin

theory; E ¼ Reissner–Mindlin theoryþ rotary inertia correction or three-dimensional solution (from Ref. [13]).
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If it is assumed that the boundary conditions are simply supported edges4:

wðpÞ ¼ 0,

vtðpÞ ¼ 0,

Mm � n ¼ 0, ð15Þ

the analytical expressions for the eigenmodes are:

wmnðpÞ ¼ sin
mpx

Lx

� �
sin

npy

Ly

� �
, ð16Þ

vmnðpÞ ¼ �Cmnp

cos
mpx

Lx

� �
sin

npy

Ly

� �
m

Lx

sin
mpx

Lx

� �
cos

npy

Ly

� �
n

Ly

8>>>><>>>>:

9>>>>=>>>>;, ð17Þ

with h ¼ 2e being the plate thickness,

boKL
mn ¼ p2

ffiffiffiffiffiffi
D

rh

s !
m2

L2
x

þ
n2

L2
y

 !
the frequency of vibration of the Kirchhoff–Love plate and5

Cmn ¼

mp
Lx

� �2

þ
np
Ly

� �2

�
ro2

mn

Z

mp
Lx

� �2

þ
np
Ly

� �2
¼

boKL
mn

ffiffiffiffiffiffi
hr
D

r
�

ro2
mn

Z

boKL
mn

ffiffiffiffiffiffi
hr
D

r ¼ 1�
1

Z

ffiffiffiffiffiffiffi
rD

h

r
o2

mnboKL
mn

, (18)
4In the Reissner–Mindlin plate these simply supported boundary conditions are called ‘‘hard type’’, the simply supported boundary

conditions of the ‘‘soft type’’ are:

wðpÞ ¼ 0,

Mm � s ¼ 0,

Mm � n ¼ 0, ð14Þ

s is the direction tangent to the edge (Fig. 1).
5It can be observed that putting Z ¼ 1 the eigenmodes of the Kirchhoff–Love plate are obtained.
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while the expression for the eigenfrequencies is [14,15] 6:

ðomnÞ
2
¼

1

2h3r

ffiffiffiffiffiffi
rh

D

r boKL
mn h3Zþ 12Zhþ 12D

ffiffiffiffiffiffi
rh

D

r boKL
mn

24
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Zhþ ðZh3

þ 12DÞ

ffiffiffiffiffiffi
rh

D

r boKL
mn

 !2

� 48h4ZrðboKL
mn Þ

2

vuut 375. ð19Þ

3. Propagation of flexural waves

If a load is applied on upper surface

tþ ¼ gðpÞrðt; tÞ½aeþ d1c1 þ d2c2�. (20)

Using the modal analysis technique and the constitutive equations, the equilibrium equations (7) become:

H€uþ Lu ¼ f (21)

with

H ¼

h3r
12

0 0

0
h3r
12

0

0 0 hr

26666664

37777775,

u ¼

vxðx; y; tÞ

vyðx; y; tÞ

wðx; y; tÞ

8>><>>:
9>>=>>;,

L ¼

�
D

2
2
q2

qx2
þ ð1� nÞ

q2

qy2

� �
þ hZ �

D

2
ð1þ nÞ

q2

qxqy
hZ

q
qx

�
D

2
ð1þ nÞ

q2

qxqy
�

D

2
2
q2

qy2
þ ð1� nÞ

q2

qx2

� �
þ hZ hZ

q
qy

�hZ
q
qx

�hZ
q
qy

�hZ
q2

qx2
þ

q2

qy2

� �

266666666664

377777777775
,

f ¼

h

2
ðsþ0x � s�0xÞ

h

2
ðsþ0y � s�0yÞ

sþ0B þ s�0B

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
. ð22Þ

The displacement vector can be obtained by superposition of normal modes:
6It is possible to obtain an approximate solution of Eq. (12) ignoring the fourth-order term in o:

eomn ¼
boKLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�boKL
ffiffiffiffi
hr
D

q
D
hZþ

h2

12

� �� �s .
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uðx; y; tÞ ¼
X1
m¼1

X1
n¼1

bmnðtÞ

�Cmnpm

Lx

cos
mpx

Lx

� �
sin

npy

Ly

� �
�Cmnpn

Ly

sin
mpx

Lx

� �
cos

npy

Ly

� �
sin

mpx

Lx

� �
sin

npy

Ly

� �

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
, (23)

and substituting in Eq. (21)

€bmnðtÞ þ o2
mnbmnðtÞ ¼

1

Dmn

� �
f mnðtÞ (24)

with

Umn ¼

�Cmnpm

Lx

cos
mpx

Lx

� �
sin

npy

Ly

� �
�Cmnpn

Ly

sin
mpx

Lx

� �
cos

npy

Ly

� �
sin

mpx

Lx

� �
sin

npy

Ly

� �

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
, ð25Þ

Z Lx

0

Z Ly

0

HUmn �Uij dxdy ¼
Dmn if i ¼ m and j ¼ n;

0 if iam or jan;

(
ð26Þ

Z Lx

0

Z Ly

0

LUmn �Uij dxdy ¼
o2

mnDmn if i ¼ m and j ¼ n;

0 if iam or jan;

(
ð27Þ

Dmn ¼
LxLy

4

� �
rhþ A2

mn þ B2
mn

	 
 rh3

12

� �
and

f mnðtÞ ¼

Z Lx

0

Z Ly

0

f �Umn dxdy. (28)

The function bmnðtÞ can be obtained by the solution of Eq. (24), together with initial conditions:

bmnð0Þ ¼

Z Lx

0

Z Ly

0

uðx; y; 0Þ �Umnðx; yÞdxdy,

_bmnð0Þ ¼

Z Lx

0

Z Ly

0

_uðx; y; 0Þ �Umnðx; yÞdxdy. ð29Þ

Substituting the bmnðtÞ function in Eq. (25) the displacement uðx; y; z; tÞ is obtained. In the following only
loads along the e direction, of intensity P, time function gðtÞ and applied area ½0; ex� [ ½0; ey� (Figs. 3 and 4) will
be considered so that

f ¼

0

0

gðtÞ
P

exey

rðx; yÞ

8>>><>>>:
9>>>=>>>;. (30)
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Fig. 3. Surface load.

Fig. 4. Type of impulses: m ¼ linear; | ¼ quadratic; � ¼ cubic; ’ ¼ sin; E ¼ step.
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Introducing:

rðx; yÞ ¼ H x�
Lx

2
þ

ex

2

� �
�H x�

Lx

2
�

ex

2

� �� �
� H y�

Ly

2
þ

ey

2

� �
�H x�

Ly

2
�

ey

2

� �� �
ð31Þ

and

zmn ¼

Z Lx

0

Z Ly

0

rðx; yÞ sin
mpx

Lx

� �
sin

npy

Ly

� �
dxdy (32)

(H is the Heaviside function) Eq. (28) begins:

f zðtÞ ¼ f mnðtÞ ¼
P

exey

zmngðtÞ. (33)

In Fig. 5 there is an example of propagation of flexural waves in plate under step load.
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Fig. 5. Propagation of flexural waves in plate under step load.
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3.1. Step load

The time function gðtÞ is

gðtÞ ¼ HðtÞ, (34)

thus

f mnðtÞ ¼
P

exey

zmnHðtÞ, (35)

and

bmnðtÞ ¼
Pzmn

exeyDmn

2 sin omnt
2

	 
2
o2

mn

,

€bmnðtÞ ¼
Pzmn

exeyDmn

cosðomntÞ.
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3.2. n-Order curve

In this case

gðtÞ ¼
t

t0

� �n

�
t

t0

� �n

� 1

� �
Hðt� t0Þ, (36)

where t0 is the rise-time (Fig. 4). In the following there are the solutions for n ¼ 1; 2; 3:

n ¼ 1

bmnðtÞ ¼

Pzmn

exeyDmn

� sinðomntÞ þ omnt

t0o3
mn

; tot0;

Pzmn

exeyDmn

� sinðomntÞ þ sin½omnðt� t0Þ� þ t0omn

t0o3
mn

; t4t0;

8>>><>>>:
€bmnðtÞ ¼

Pzmn

exeyDmn

sinðomntÞ

t0omn

; tot0;

Pzmn

exeyDmn

sinðomntÞ � sin½omnðt� t0Þ�

t0omn

; t4t0;

8>>><>>>:
(37)

n ¼ 2

bmnðtÞ ¼

Pzmn

exeyDmn

�2þ 2 cosðomntÞ þ o2
mnt2

t20o
4
mn

; tot0;

Pzmn

exeyDmn

2fcosðomntÞ � cos½omnðt� t0Þ�g

t20o
4
mn

þ
Pzmn

exeyDmn

omnt0f2 sin½omnðt� t0Þ� þ omnt0g

t20o
4
mn

; t4t0;

8>>>>>>>><>>>>>>>>:

€bmnðtÞ ¼

Pzmn

exeyDmn

2½1� cosðomntÞ�

t20o
2
mn

; tot0;

�
Pzmn

exeyDmn

2fcosðomntÞ � cos½omnðt� t0Þ�g

t20o
2
mn

�
Pzmn

exeyDmn

omnt0 sin½omnðt� t0Þ�

t20o
2
mn

; t4t0;

8>>>>>>>><>>>>>>>>:

(38)

n ¼ 3

bmnðtÞ ¼

Pzmn

exeyDmn

6 sinðomntÞ � 6omntþ o3
mnt3

t30o
5
mn

; tot0;

Pzmn

exeyDmn

6 sinðomntÞ � 6omnt0 cos½omnðt� t0Þ�

t30o
5
mn

þ
Pzmn

exeyDmn

t30o
3
mn þ 3 sin½omnðt� t0Þ�ð�2þ t20o

2
mnÞ

t30o
5
mn

; t4t0;

8>>>>>>>><>>>>>>>>:

€bmnðtÞ ¼

Pzmn

exeyDmn

6½� sinðomntÞ þ omnt�

t30o
3
mn

; tot0;

Pzmn

exeyDmn

�6 sinðomntÞ þ 6 sin½omnðt� t0Þ�

t30o
3
mn

þ
Pzmn

exeyDmn

�3t0omnf�2 cos½omnðt� t0Þ�g

t30o
3
mn

þ
Pzmn

exeyDmn

þomnt0 sin½omnðt� t0Þ�

t30o
3
mn

; t4t0:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(39)
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3.3. Sine-load

For the sine-load

gðtÞ ¼ sin
p
2

t

t0

� �� �
� sin

p
2

t

t0

� �� �
� 1

� �
Hðt� t0Þ (40)

and the solutions are:

bmnðtÞ ¼

Pzmn

exeyDmn

2pt0 sinðomntÞ � 4omnt20 sin
pt

2t0

� �
p2omn � 4o3

mnt20
; tot0;

Pzmn

exeyDmn

p2f1� cos½ðt� t0Þomn�g

o2
mnðp� 2omnt0Þðpþ 2omnt0Þ

þ
Pzmn

exeyDmn

2omnt0½�p sinðomntÞ þ 2omnt0�

o2
mnðp� 2omnt0Þðpþ 2omnt0Þ

; t4t0;

8>>>>>>>>>>><>>>>>>>>>>>:

€bmnðtÞ ¼

Pzmn

exeyDmn

p sin
pt

2t0

� �
� 2omnt0 sinðomntÞ

p2 � 4o2
mnt20

; tot0;

Pzmn

exeyDmn

pfp cos½ðt� t0Þomn� � 2omnt0 sinðomntÞg

p2 � 4o2
mnt20

; t4t0:

8>>>>>><>>>>>>:
ð41Þ

4. Numerical results and discussions

In order to validate the method, a comparison with published results, derived by other methods, has been
made. In Ref. [8] Weaver and Pao have developed a 3D solution with following parameters: E ¼ 67:8GPa,
n ¼ 0:21, r ¼ 2300 kg=m3. The load is a step pulse of intensity �3:46N. Fig. 6 shows that the two solutions,
with the same values for the Reissner–Mindlin plate model, agree well in the time interval. Proceeding to study
the typical aerospace element, an aluminum plate with E ¼ 73GPa, n ¼ 0:32, r ¼ 2770 kg=m3 has been taken
into account. In Figs. 7–13 the acceleration versus time, the amplitude of the coefficient of the acceleration €bmn

as a function of proper frequencies f mn, and the SRS for different rise times and rise functions are reported.
The distance between the measurement and the load point is approximately 10 cm. It is possible to observe
that, for a fixed rise function, the increase of the rise time reduces the values of the acceleration amplitude in all
the range of frequencies and therefore also the values of the acceleration versus time. It must be noticed that as
the time increases, the percentage influence of the low-frequency components grows, and this effect becomes
more evident with increasing values of t0. The correlated SRS shows that there is a reduction only at high
Fig. 6. Comparison between 3Dð’Þ and Reissner–Mindlin ð�Þ solution (from Ref. [8]).



ARTICLE IN PRESS

Fig. 7. Linear ramp: acceleration versus time.

Fig. 8. Linear ramp: €bmnðf mnÞ (a), SRS (b) � ) t0 ¼ 1ms; —– ) t0 ¼ 5ms; m) t0 ¼ 10ms.

Fig. 9. Quadratic ramp: acceleration versus time.

Fig. 10. Quadratic ramp: €bmnðf mnÞ (a), SRS (b) � ) t0 ¼ 1ms; —– ) t0 ¼ 5ms; m) t0 ¼ 10ms.

F. Botta, G. Cerri / Journal of Sound and Vibration 308 (2007) 563–578 573
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Fig. 12. Cubic ramp: €bmnðf mnÞ (a), SRS (b) � ) t0 ¼ 1ms; —– ) t0 ¼ 5ms; m) t0 ¼ 10ms.

Fig. 13. Influence of thickness—linear ramp ðt0 ¼ 5Þ: acceleration versus time.

Fig. 11. Cubic ramp: acceleration versus time.

F. Botta, G. Cerri / Journal of Sound and Vibration 308 (2007) 563–578574
frequencies. In the case of the quadratic and cubic ramp the spectrum curve of €bmn is similar to a rectangular
hyperbola and the vertex goes towards the origin of the axes as t0 increases. The influence of the thickness h

and the distance Dr on SRS is reported in Figs. 14 and 15.It can be seen that the values decrease, when h or Dr

is increased, in all the range of frequencies considered. In Figs. 16–18 there is the comparison between the SRS
due to the different rise function and in different rise times. It is possible to observe that, in all the rise times
considered, when order of the curve increases the values at high frequencies grow.

5. Conclusions

In this paper the method of expansion in normal modes has been applied to study the response of a
Reissner–Mindlin plate under impulse loads. In particular the influence of impulse parameters and geometric
characteristics of the plate on the Shock Response Spectrum (SRS) has been studied. The results show that by
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Fig. 14. Influence of thickness—linear ramp ðt0 ¼ 5Þ: €bmnðf mnÞ (a), SRS (b) � ) h ¼ 3mm; —– ) h ¼ 6mm; m) h ¼ 9mm.

Fig. 15. Influence of distance from the impact point (linear ramp t0 ¼ 5ms) � ) Dr ¼ 10 cm; —– ) Dr ¼ 20 cm; m) Dr ¼ 30 cm.

Fig. 16. Influence of the ramp type: t0 ¼ 1ms; � ) cubic; —– ) quadratic; m) linear.

F. Botta, G. Cerri / Journal of Sound and Vibration 308 (2007) 563–578 575
increasing the rise time the values of the SRS to high frequencies are reduced, while the augment of the
thickness h or of the distance from the impulse point reduces the values of the SRS in all the frequency range.
The SRS at low frequencies does not depend significantly on the variation of the rise function impulse
considered (linear, quadratic and cubic).
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Fig. 17. Influence of the ramp type t0 ¼ 5ms � ) cubic; —– ) quadratic; m) linear.

Fig. 18. Influence of the ramp type t0 ¼ 10ms � ) cubic; —– ) quadratic; m) linear.

F. Botta, G. Cerri / Journal of Sound and Vibration 308 (2007) 563–578576
Acknowledgments

The authors thank the two anonymous reviewers for helpful and their very constructive comments.
Appendix. SRS

The SRS is the maximum absolute acceleration response of a single degree of freedom (SDOF) to the
application of the acceleration time history to its base [16], plotted over the specified frequency range and with
a constant quality factor Q ¼ 1=2d, where d is a viscous damping ratio. In this study, the acceleration applied
to the base is the vertical acceleration of an upper surface point of the plate (Fig. 3).

The equilibrium equation of a SDOF (Fig. A.1) is

m €xiðoi; tÞ þ ci½ _xiðoi; tÞ � _uðtÞ� þ ki½xiðoi; tÞ � uðtÞ� ¼ 0 (42)

and the acceleration solution [3]

€xiðoi; tÞ ¼ 2Boi

Z t

0

€uðtÞe�Boiðt�tÞ cos½odi
ðt� tÞ�dt

þ
o2

i ð1� 2B2Þ
odi

� � Z t

0

€uðtÞe�Boiðt�tÞ sin½odi
ðt� tÞ�dt. ð43Þ
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Fig. A.1. SRS construction.
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If the modal analysis is applied, jjðqÞ are the eigenfunctions and ajðtÞ their coefficients, the expression of the
vertical displacement wðq; tÞ in a point q of the plate can be written:

wðq; tÞ ¼
XN

j¼1

ajðtÞjjðqÞ. (44)

By differentiating Eq. (44) two times with respect to t and substituting it in Eq. (43) the acceleration of the
mass mi is obtained:

€xiðoi; tÞ ¼
XN

j¼1

jjðqÞqjðoi; tÞ (45)

with

qjðoi; tÞ ¼

Z t

0

€ajðtÞimpðoi; t� tÞdt (46)

and

impðoi; t� tÞ ¼ 2Boie
�Boiðt�tÞ cos½odi

ðt� tÞ�dt

þ
o2

i ð1� 2B2Þ
odi

� �
e�Boiðt�tÞ sin½odi

ðt� tÞ�dt. ð47Þ

The maximum value of the function €xiðoi; tÞ versus t furnishes the SRS in the point q at the frequency f i.
Varying the frequency f i the diagram of the SRS in the point q is obtained(Fig. A.1).
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